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a b s t r a c t

To understand the development of mathematical cognition and to
improve instructional practices, it is critical to identify early predic-
tors of difficulty in learning complex mathematical topics such as
algebra. Recent work has shown that performance with fractions
on a number line estimation task predicts algebra performance,
whereas performance with whole numbers on similar estimation
tasks does not. We sought to distinguish more specific precursors
to algebra by measuring multiple aspects of knowledge about
rational numbers. Because fractions are the first numbers that are
relational expressions towhich students are exposed, we investigat-
ed how understanding the relational bipartite format (a/b) of frac-
tions might connect to later algebra performance. We presented
middle school students with a battery of tests designed to measure
relational understanding of fractions, procedural knowledge of frac-
tions, andplacement of fractions, decimals, andwhole numbers onto
number lines as well as algebra performance. Multiple regression
analyses revealed that the best predictors of algebra performance
were measures of relational fraction knowledge and ability to place
decimals (not fractions orwhole numbers) onto number lines. These
findings suggest that at least two specific components of knowledge
about rational numbers—relational understanding (best captured by
fractions) and grasp of unidimensional magnitude (best captured by
decimals)—can be linked to early successwith algebraic expressions.
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Introduction

Given the well-documented difficulties that American students often experience in learning alge-
bra and more advanced topics in mathematics (Gonzales et al., 2008; Richland, Stigler, & Holyoak,
2012; Smith & Thompson, 2007), it is important to identify those aspects of earlier mathematics that
predict success or failure on advanced topics. Decomposing the prerequisites for success at algebra can
potentially guide theoretical analyses of the mental representation of mathematics and also aid in
developing more effective instructional strategies. Recent work suggests that knowledge of rational
numbers, notably fractions, is closely linked to later success in mathematics. For example, in a large
sample of students from the United States and the United Kingdom, Siegler and colleagues (2012)
found that fraction knowledge, measured by basic arithmetic and conceptual questions, predicted
algebra knowledge and math achievement in general at 16 years of age (beyond what could be pre-
dicted from knowledge of whole numbers). Other researchers have also found significant connections
between fraction knowledge (including basic conceptual knowledge and performance on tasks that
assess grasp of fraction magnitude) and algebra performance (Booth & Newton, 2012; Booth,
Newton, & Twiss-Garrity, 2014; Brown & Quinn, 2007; Empson & Levi, 2011).

Although there seems to be an important link between fraction understanding and algebra perfor-
mance, the nature of this link has yet to be firmly established. Wu (2009) and Siegler, Thompson, and
Schneider (2011) emphasized the fact that a fraction, like any other type of number, can be placed on a
number line. This understanding requires an integration of procedural and conceptual knowledge
about fractions and magnitudes. Two recent studies by Booth and colleagues (Booth & Newton,
2012; Booth et al., 2014) have provided support for this hypothesis. Among middle school students
taking elementary algebra classes, a significant correlation was observed between performance on a
task requiring estimates of the positions of fractions on a number line and a subsequent algebra test
that included problems requiring solving problems, knowledge of critical features in algebraic
equations, and coding of equations. Number line estimation with fractions was a stronger predictor
of algebra performance than declarative fraction knowledge, a measure of procedural knowledge of
how to use fractions in equations, or number line estimation with whole numbers. These findings raise
the possibility that a key link between knowledge of rational numbers and algebra performance may
involve understanding of fraction magnitudes.

Although understanding of magnitudes is without question a core aspect of mathematical knowl-
edge, there are good reasons to believe that understanding of mathematical relations is also critical in
grasping algebra. For example, in the algebraic expression x = 4y, the value of the variable x is
expressed in relation to that of y without any specific magnitude being assigned to either. In recent
work (DeWolf, Bassok, & Holyoak, 2015; Rapp, Bassok, DeWolf, & Holyoak, in press), we have empha-
sized that fractions, with their bipartite a/b structure, naturally convey the relations between the
numerator and the denominator (typically two countable sets). Of course, a fraction also represents
the magnitude that corresponds to the division of a by b. This duality in the roles of fractions as math-
ematical representations of relations and magnitudes is similar to the duality of algebraic expressions
(Sfard & Linchevski, 1994). Students must understand that they can use algebraic expressions to rep-
resent both the relations between quantities and the process used to find an unknown quantity. For
example, the quantity of four boxes of equal weight can be represented as 4w without knowing the
actual magnitude of a box’s weight. The expression 4w represents the combined weight of the boxes
and the process (multiplication) that could be used to determine the total weight given the actual
weight of one box. Thus, students’ conceptual understanding of fractions as representing both rela-
tions and magnitudes may be an important precursor for their subsequent understanding of algebraic
expressions.

Interestingly, whereas fractions represent both relations and numerical magnitudes, magnitude
equivalent decimals lose the relational structure inherent in a fraction and more directly express
one-dimensional magnitude. Studies have shown that magnitude comparisons can be made much
more quickly and accurately with decimals than with fractions (DeWolf, Grounds, Bassok, &
Holyoak, 2014; Iuculano & Butterworth, 2011) but that fractions are more effective than decimals
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in tasks such as relation identification and analogical reasoning, for which relational information is
paramount (DeWolf et al., 2015). Because fractions are the first numbers with an internal relational
structure that students are taught, understanding of fractions as relations may be a key predictor of
early algebra success. Insofar as understanding magnitudes is also important for grasping algebra,
magnitude tasks involving decimals (which express magnitudes more directly than fractions) may
be more predictive than magnitude tasks based on fractions.

Currently, no study has assessed tasks involving fractions as well as tasks involving decimals as
predictors of algebra performance, nor has any study attempted to tease apart relational and magni-
tude knowledge as predictors. Hence, our aim in the current study was to better distinguish among
possible links between specific types of rational number knowledge and early algebra performance.
We extended the general design of the studies by Booth and Newton (2012) and Booth et al.
(2014). In addition to assessing magnitude knowledge using number line tasks with whole numbers
and fractions, we included a similar task with decimals. By comparing the predictive power of mag-
nitude tasks with fractions and with decimals, we sought to determine whether fraction magnitude
is a uniquely important predictor of algebra performance or whether knowledge of rational number
magnitude in general (perhaps better assessed using decimals than fractions) is what is critical.

In addition, we added a measure designed to test students’ understanding of fractions as relations.
Importantly, performing well on this task did not require calculation of any particular magnitude. If
knowledge of fractions predicts algebra performance because of transfer based on the status of frac-
tions as relational expressions, then the relational test may provide a novel and unique predictor of
success in algebra.

Method

Participants

All students were enrolled in introductory pre-algebra courses from two suburban Los Angeles
schools. A total of 65 seventh-grade students (mean age = 12.4 years, 26 male and 39 female)
participated in the study near the end of the school year. Students were from five different classes
consisting of students with a substantial range of skill levels.

Measures and materials

Number line estimation tasks
To measure magnitude knowledge, we adopted a pencil-and-paper number line estimation task

that has been used in many previous studies, including that of Booth et al. (2014). Our aim was to
closely replicate the number line estimation findings of Booth et al. (2014); hence, we adopted their
three number line estimation tasks. In addition, we included a fourth decimal number line task that
was created by translating the fractions used in the fraction estimation task into magnitude equivalent
decimals. Thus, a total of four scales were used: 0–1,000,000 whole numbers (12 trials), 0–62,571
whole numbers (12 trials), 0–1 fractions (18 trials), and 0–1 decimals (18 trials). The two measures
of whole number magnitude (regular scale of 0–1,000,000 and atypical scale of 0–62,571) were com-
bined to create a composite measure of whole number magnitude knowledge (as in Booth & Newton,
2012, and Booth et al., 2014).

The two whole number line tasks (replications of those used by Booth et al., 2014) were completed
with a packet of 8.5 � 11-inch paper with a 20-cm line printed across the middle. The line was marked
with 0 at the left end and 1,000,000 (or 62,571) at the right end. On each page, a number was written
at the top and students were instructed to put a hatch mark on the line where that number would go.
The numbers used were the same as those used by Booth et al. (2014). For the 0–1,000,000 scale, these
were 3123, 7604, 12129, 20394, 85261, 132694, 298237, 358742, 453903, 595246, 724859, and
953271; for the 0–62,571 scale, the numbers were 19, 44, 176, 1059, 6426, 15023, 21649, 27393,
33691, 42672, 49126, and 54705.

The fraction number line task was identical to the whole number line tasks except that the scale of
the number line was from 0 to 1 and numbers given were fractions rather than whole numbers. The
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fractions used were again identical to those used by Booth and colleagues (2014): 1/360, 1/180, 1/45,
5/118, 1/12, 13/85, 1/5, 3/11, 2/7, 1/3, 83/215, 177/352, 3/5, 5/8, 33/47, 7/9, 5/6, and 146/149.

The decimal number line task (a new task introduced in the current study) was identical to the
fraction number Line task except that all of the fractions used in the fraction number line task were
given as their decimal equivalents. The decimals varied in length from two to six digits, including
some decimals with initial or terminating 0s, in order to avoid any perceptual cues that might lead
students to interpret decimals using a whole number strategy. The decimals used were .00278,
.0056, .022, .042373, .08, .1529, .200, .27, .28571, .3333, .386, .3324, .60, .62500, .702128, .78,
.83333, and .980.

Students were randomly assigned to complete the four scales in one of six possible orders. The
trials within each of the scales were randomized. Students were given the same instructions to
complete the number line task as in Booth et al. (2014):

‘‘First we’re going to work with four sets of number lines. You remember what a number line is,
right? A number line is just a line with numbers across that shows us all of the numbers in order.
In these number lines, only the numbers at the ends of the line will be marked, but not the ones in
between. Your job is going to be to mark where you think some other numbers would go. Above
each number line, there will be a number. Whenever you decide where you think the number goes,
you need to place a mark on the number line where you think it goes. Make sure to pay attention to
what the numbers are on the ends of the number lines because there are three different scales in
your packet. Go ahead and work through your packet.’’

Similar to the procedure used by Booth et al. (2014), the distance between the left endpoint and the
student’s hatch mark on the number line was measured with millimeters (using a standard ruler).
These measurements were then recorded on a computer and used to compute what the corresponding
value would be at that hatch mark on the number line scale. These values were calculated as follows:
(distance from left endpoint/total distance) � length of number line scale. For example, if a student
placed a hatch mark for 2500 on the 0–1,000,000 line at 40 mm, the corresponding value would be
(40/2000) � 1,000,000 = 200,000 (i.e., the student placed 2500 where 200,000 should go). These esti-
mated values were plotted against the actual values that were given, and the R2

lin for each participant
was calculated. In addition, the percentage absolute error (PAE) was computed for each participant as
follows: [(estimate � actual)/scale] * 100, following the procedure used by Booth et al. (2014).

Fraction relations task
This measure (a novel addition in the current study) consisted of a range of questions that mea-

sured students’ understanding of different relational uses for fractions (see Appendix A). For example,
questions measured knowledge of fraction equivalence, division, inverse, multiplying by the recipro-
cal, and identifying part-to-part ratios versus part-to-whole ratios in countable sets. These questions
were taken from previous published work and research projects designed to investigate conceptual
rather than procedural understanding of fractions. (Sources are noted in Appendix A.) Importantly,
for all of the problems, there was no need to calculate the magnitude of any fraction. These questions,
therefore, were quite distinct from the pure measure of magnitude understanding provided by the
fraction number line task. The fraction relations task consisted entirely of multiple-choice questions
that were scored on a binary basis (0 for incorrect, 1 for correct).

Fraction procedures task
An additional measure focusing on knowledge of fraction-related procedures consisted of problems

taken from the ‘‘declarative fraction knowledge’’ items used by Booth et al. (2014). These questions
were mainly designed to measure understanding of how to manipulate fractions as they appear in
equations (see Appendix A). For example, questions included asking students to identify what the next
procedural step would be to solve a problem. This measure was designed to control for connections
between fractions and algebra that are based on simply knowing how to perform particular
procedures that are common between fractions and algebra (e.g., manipulation of fractions, division
operation). To solve all of these questions, participants must be able to identify correct procedures that
are used when algebra problems involve fractions.
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The questions assessing knowledge of fraction relations and fraction procedures were intermixed
within a single battery, with questions presented to each student in one of six random orders. All of
the questions used in the battery are shown in Appendix A.

Algebra knowledge task
Algebra knowledge was measured with a variety of questions (see Appendix B). Some of the ques-

tions were adapted from Booth and colleagues’ (2014) measure of algebra knowledge, which included
equation solving and ‘‘feature knowledge’’—that is, understanding of properties of algebraic equations
(e.g., is 4x � 3 equivalent to 3 � 4x?). This task also included three algebra word problems and other
algebra problems taken from a bank of questions involving understanding and creating algebra
expressions used in Algebra 1 courses.1 Of the 14 total questions, 6 were in multiple-choice format
and scored on a binary basis (0 for incorrect, 1 for correct). The remaining 8 items were equation-solving
and word problem questions that were scored as correct if the student found the correct value for the
missing variable and as wrong otherwise. No partial credit was awarded if the student wrote out the cor-
rect procedure but failed to find the correct answer.

Procedure

Students received all of these measures as pencil-and-paper tests in the following order: (a) num-
ber line estimation, (b) fractions (relational and procedural tasks), and (c) algebra knowledge (similar
to the procedure followed by Booth et al., 2014, and Booth & Newton, 2012). The fixed order was used
mainly due to practical limitations of controlling the packet completion in a classroom setting. Stu-
dents were given approximately 50 min to complete all three packets, although most took less than
30 min. Students were not allowed to use calculators to complete the problems and were encouraged
to write out their work on the paper.

Results

Distributions of performance for each measure

Multiple regression analyses were performed to identify those tasks that reliably accounted for
unique variance in algebra performance. As a prerequisite to these analyses, we examined histograms
and standard descriptive statistics of performance for each measure to ensure that all measures
showed a reasonable degree of variability across our participants. For the number line tasks, the
patterns of performance were very similar using either R2

lin or PAE to assess level of performance. These
two measures have often been used interchangeably in previous number line estimation studies (Booth
et al., 2014; Siegler & Booth, 2004). For simplicity, we report only results based on PAE. The average PAE
score for both the fraction number line (FNL) and decimal number line (DNL) measures was 15%. Vari-
ance in performance for DNL was slightly higher (r2 = 122) than that for FNL (r2 = 101). The average
PAE score for the whole number line (WNL) measure was nearly identical at 16%, but variance in
performance was considerably smaller (r2 = 49). Average proportion correct on fraction procedures
questions was .57 (r2 = .04). Performance on fraction relations questions was slightly lower (M = .42,
r2 = .05). Performance on algebra knowledge questions was also in the same range (M = .48, r2 = .02).
All of the measures showed substantial variability in performance across students, satisfying a prerequi-
site for serving as potential predictors.

Intercorrelations among all measures

Table 1 shows the raw correlations among the three number line measures (WNL, FNL, and DNL),
the fraction relations and fraction procedures measures, and the algebra knowledge measure. Note

1 A sample of problems was taken from a pool of problems used by Belinda Thompson in work performed for her PhD
dissertation (in progress) at the University of California, Los Angeles, which she kindly allowed us to use in the current study.
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that correlations of the number line measures with the other measures are negative because PAE is a
measure of error. As observed by Booth et al. (2014), the PAE for FNL was significantly correlated with
algebra performance (r = –.39, p = .001), whereas the PAE for WNL was not (r = –.14, p = .26). In
addition, based on the new measures introduced in the current study, we found that the PAE for
DNL (r = –.58, p < .001), performance on fraction relations (r = .47, p < .001), and performance on frac-
tions procedures (r = .33, p = .008) were all significantly correlated with algebra performance. (Again,
note that significant negative correlations indicate that higher performance on number line tasks is
associated with higher performance on other tasks.)

Multiple regression analyses

Because several predictor variables showed reliable intercorrelations, we performed a series of
multiple regression analyses to distinguish among the different predictors and to identify those that
best accounted for unique components of variance in algebra performance. We first used the three
number line measures as predictors in order to distinguish among these three measures of magnitude
processing. The predictors were entered first as FNL, then DNL, and then WNL (because Booth et al.,
2014, found FNL to be the leading predictor). The overall model accounted for a significant amount
of variance in algebra performance, F(3,61) = 11.50, p < .001; however, only DNL contributed a sig-
nificant proportion of variance: DNL, b = –.51, t(61) = 4.28, p < .001; WNL, b = –.12, t(61) = 1.15,
p = .27; FNL, b = –.14, t(61) = 1.14, p = .26. We repeated the regression analysis using a different order
of variables (DNL, then FNL, and then WNL) and obtained the same pattern of results.

A second set of regressions was then performed, including the fraction relations and fraction pro-
cedures measures in addition to the three number line estimation measures. The fraction relations
predictor was inserted first because we hypothesized that this would be a strong predictor of algebra
performance. Given that DNL was shown to be the most predictive magnitude measure, we then
entered DNL, then FNL, and finally WNL. The last predictor entered was fraction procedures, which
we did not expect to be closely related to algebra performance. The model, which is depicted in
Fig. 1, accounted for a significant amount of variance in algebra performance, F(5,59) = 8.64,
p < .001. However, only scores on the DNL task, b = �.42, t(59) = 3.43, p = .001, and the fraction rela-
tions task, b = .24, t(59) = 2.12, p = .03, accounted for a significant proportion of variance over and
above the other three predictors: WNL, b = �.13, t(59) = 1.31, p = .19; FNL, b = �.08, t(59) = 0.69,
p = .50; fractions procedures, b = .11, t(59) = 1.03, p = .31. We also tested the model by entering the
magnitude measures first, followed by fraction relations and fraction procedures, and obtained the
same pattern of results. Thus, among all of the predictor measures that were examined, only fractions
relations and DNL performance predicted unique components of variance in algebra performance
while controlling for the other measures.

Discussion

The current study provides evidence that both understanding of decimal magnitudes, as assessed
by a number line task, and relational understanding of fractions are strong predictors of algebra

Table 1
Raw correlations between measures.

Fraction
relations

Fraction
procedures

Fraction
number line

Decimal
number line

Whole
number line

Fraction procedures .38**

Fraction number line �.38** �.19
Decimal number line �.45*** �.27* .50***

Whole number line .07 �.07 .08 .03

Algebra performance .47*** .33** �.39** �.58*** �.14

* .01 < p < .05.
** .001 < p < .01.

*** p < .001.
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performance. We replicated the empirical finding of Booth et al. (2014) and Booth and Newton (2012)
that accuracy in number line estimation with fractions is related to algebra performance (whereas
accuracy with whole numbers is not); however, multiple regression analyses revealed that this linkage
no longer holds when performance with decimals on the same task is considered. In addition, we
showed for the first time that a different and distinct aspect of fraction knowledge—a measure of
understanding relations involving fractions—adds a unique contribution to predicting algebra
performance. Together, measures of decimal magnitude understanding and relational fraction
understanding reliably predict early algebra performance.

Many previous studies have focused primarily on number line estimation and its predictive power.
Successful performance on the fraction number line task appears to involve two components: (a) per-
forming a division operation based on the relation between the numerator and denominator and (b)
approximating the resulting magnitude on the physical line. Our results suggest that these two skills
can be distinguished by separate measures. The former can be assessed by a test of relational knowl-
edge with fractions, and the latter can be assessed by the number line task using decimals (because
decimals obviate the need to perform division). These two specific measures provide more accurate
predictors of algebra performance than the fraction number line task.

Further research is needed to understand why the number line task with decimals predicts algebra
performance more effectively than the same task with other number types. As rational numbers, both
fractions and decimals are more complex than whole numbers. But as noted above, number line
placement with decimals may provide a ‘‘purer’’ measure of magnitude comprehension than the same
task with fractions because decimal magnitudes can be accessed without performing a division
operation. Interpreting a multi-digit decimal value certainly requires a form of relational processing,
as does interpreting a multi-digit whole number. Decimal notation is distinct from that of whole num-
bers (particularly because a leading zero can appear to the right of the decimal point and to the left of
any other integers). However, research on magnitude comparisons has shown that performance with
decimals is similar in accuracy and speed to performance with multi-digit whole numbers, whereas
comparisons with fractions are much more difficult (DeWolf et al., 2014; Huber, Klein, Willmes,
Nuerk, & Moeller, 2014; Iuculano & Butterworth, 2011). Thus, it seems that decimals, like whole num-
bers but unlike fractions, can be readily interpreted as expressing a one-dimensional magnitude.

However, there are other possible interpretations for the greater predictive power of the decimal
version of the number line task. Decimal performance was somewhat more variable than performance
with other number types. This greater variability might reflect the fact that decimals are introduced to

Fig. 1. Predictive model for algebra performance derived from multiple regression analyses.
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students later than fractions and, hence, are the number type with which the students in our study
had the least experience. Consequently, the decimal number line estimation task may simply be mea-
suring general math ability (because the more precocious students may have mastered decimal mag-
nitudes earlier than their age-matched peers). Previous research has shown that as number line
estimation tasks (with whole numbers or fractions) become progressively more difficult (by increasing
the size of the scale, using unusual scales, or including fractions), performance on these tasks is cor-
related with the overall development of general math ability (Booth & Siegler, 2008; Ramani & Siegler,
2008; Siegler et al., 2011). Further research is needed to determine whether decimal number line esti-
mation is especially correlated with overall math knowledge.

An equally intriguing finding from the current study is that understanding of fraction relations is a
reliable additional predictor of algebra performance, separable from measures of magnitude under-
standing. Relational understanding of fractions, thus, appears to provide a stepping-stone toward
acquiring the cognitive skills needed to form and understand algebraic expressions. The bipartite for-
mat of fractions sets them apart from all other number types, enabling them to convey relations
between sets more effectively than their decimal magnitude counterparts (DeWolf et al., 2015). Thus,
fractions provide an early opportunity for students to understand the concept of expressing relations
between quantities. In fact, excessive emphasis on understanding fraction magnitudes may obscure
their relational meaning.

In particular, it appears that this type of relational understanding might be most useful for under-
standing algebraic expressions. Understanding how to create and manipulate algebra expressions is a
crucial aspect of mastering algebra and is important for solving word problems and equations. In gen-
eral, understanding how to appropriately construct and manipulate fraction expressions is necessary
for successful construction and manipulation of algebraic expressions. However, this linkage goes
beyond simply being able to perform the same rote procedures given that success on the common pro-
cedures measured by the fraction procedures questions did not uniquely predict algebra performance.
Based on this finding, it seems that algebra instruction should be related more closely to fraction
instruction in order to bootstrap students’ understanding of algebra.

Other researchers have pointed out the connections between understanding relational concepts in
arithmetic and understanding those in algebra. Empson and colleagues (Empson & Levi, 2011;
Empson, Levi, & Carpenter, 2011) suggested that students’ basic intuitions about arithmetic functions
(across both whole numbers and fractions) can be exploited to build basic relational concepts linking
arithmetic to algebra. In particular, learning about fraction relations may help students to acquire
some implicit understanding of general regularities such as the associative property. For example,
to add 3/4 + 1/2, a student might reason that 3/4 is equal to 1/2 + 1/4. Accordingly, one can add 1/
2 + 1/2 to get 1 and have 1/4 left over (Empson, 1999). Empson (1999) argued that fraction learning
can be connected to basic understanding of properties of algebra (e.g., the use of the distributive prop-
erty of multiplication over addition to add 7a + 4a to get 11a, which is similar to the reasoning
required to understand how to add 70 + 40 or 7/5 + 4/5).

Fractions are the first example of numbers that are relational expressions to which students are
exposed. Their format has implications for the types of procedures that are appropriate for students
to perform. Taking the example from Empson and colleagues used above (Empson & Levi, 2011;
Empson et al., 2011), one could consider 7a to be an expression of 7 units each of size a. This interpre-
tation is similar to the interpretation of the fraction 7/5 as an expression of 7 units of 1/5. Such an
understanding of 7/5 has implications for the appropriate ways to perform arithmetic operations such
as grasping the constraint that ‘‘unlike terms’’ cannot be combined in algebra (e.g., 7a + 8b does not
equal 15ab, just as 7/5 and 8/9 cannot be combined to get 15/45 or 15/14). As students become fluent
with the concept of a relational expression, their understanding of fraction relations may help to boot-
strap their learning about similar relations within algebra. Thus, as the current findings suggest, a con-
ceptually rich understanding of fractions may be especially important for understanding algebra.

The current research establishes a correlation between fraction understanding and algebra perfor-
mance and shows that this factor is separable from the predictive power of measures of magnitude.
However, further research is required to determine whether these linkages between rational number
knowledge and learning of algebra are causal. Future studies should test whether direct instruction in
relations involving fractions improves algebra performance over and above the potential usefulness of
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instruction focusing on magnitudes of rational numbers. A program of research aimed at assessing the
effectiveness of alternative instructional interventions would help to determine whether fraction
understanding has a causal impact on algebra performance.

Currently, recommendations to educators highlight the importance of teaching students the mag-
nitudes of fractions and especially emphasize use of the number line representation to highlight rela-
tive magnitudes (National Mathematics Advisory Panel, 2008; Siegler et al., 2010). The current
findings suggest that training placement of decimals on a number line representation may be at least
as effective for instruction. Of equal importance, teachers may need to focus on highlighting the con-
nections between fraction and algebraic expressions, thereby capitalizing on the relational parallels
between these two important domains of mathematical knowledge.
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Appendix A. Appendix

A.1. Fraction problems

Procedural fraction questions (from Booth et al., 2014, ‘‘declarative fraction questions’’)
Is either of these an effective first step toward solving for z in the equation 3 ¼ 1

z ?
Circle yes or no.

(a) Multiply both sides by z. Yes No
(b) Divide both sides by 3. Yes No

Would any of the following steps be an effective first step toward solving the equation 6
d ¼ 2 ?

Circle yes or no.

(a) Subtract 2 from both sides. Yes No
(b) Multiply both sides by d. Yes No

If y = 3x + 2, which of these expresses x in terms of y? Circle the correct answer.

a: x ¼ y� 2
3

b: x ¼ yþ 2
3

c: x ¼ y
3
� 2 d: x ¼ y

3
þ 2

On Planet Zebula, zeds are a unit of money. On this planet, Carla paid x zeds for three cartons of
juice. What is the price in zeds of one carton of juice? Circle all that apply.

a:
x
3

b:
3
x

c: 3þ x d:
1
3
x e: 3x

A.2. Relational fraction questions

A.2.1. Multiplicative/Division relations
(adapted from B. Thompson, 2014, unpublished dissertation)
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Which expression shows a way to find half a number, n? Circle yes or no for each expression:

n� 1
2

yes no

n� 1
2

yes no

n� 2 yes no

n� 1
2

yes no

(adapted from Brown & Quinn, 2006)
What is 7

3
5
equal to?

(a) 7� 3
5

(b) 3
5 � 7

(c) 35
3

(d) 21
5

Inverse relation (adapted from Brown and Quinn, 2006)
(n is an integer greater than 0)
If n increases in value, then 1/n

(a) gets very close to 1
(b) gets very close to 0
(c) increases in value, too

Equivalence relation (adapted from B. Thompson, 2014, unpublished dissertation)
Which fraction is equal to 15/20?

(a) 20/25
(b) 9/12
(c) 20/15
(d) none of these

Which fraction is equal to 8/12?

(a) 24/48
(b) 16/36
(c) 12/18
(d) none of these

Identifying ratio relations (adapted from DeWolf et al., 2015)
In the pictures below, there are two types of relationships: part-to-part ratio (number of crosses to

number of clouds) and part-to-whole ratio (number of crosses to total number of crosses and clouds
OR number of clouds to total number of crosses and clouds). Circle the relationship that each fraction
represents:
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2
7

ðaÞ part -to-part ratio ðbÞ part -to -whole ratio

4
18

ðaÞ part -to-part ratio ðbÞ part -to -whole ratio

14
18

ðaÞ part -to-part ratio ðbÞ part -to -whole ratio

7
9

ðaÞ part -to-part ratio ðbÞ part -to -whole ratio

Appendix B. Algebra problems

Equation solving (from Booth et al., 2014)
Solve the equations:

(1) 5 ¼ x� 7
(2) 8

k ¼ 4
(3) �4xþ 5 ¼ 8
(4) 6

b ¼ 9
(5) �3yþ 6 ¼ 8þ 5y

Feature knowledge (from Booth et al., 2014)
Which of the following is equal to �4xþ 3 ?

(a) 4x + 3 yes no
(b) 3 � 4x yes no
(c) 4x � 3 yes no
(d) 3 + (�4x) yes no
(e) 3 + 4x yes no

If 10x� 12 ¼ 17 is true, which of the following must also be true?

(a) 10x � 12 + 12 = 17 + 12 yes no
(b) x � 2 = 17 yes no
(c) 10x = 29 yes no
(d) 10x = 17 yes no
(e) 10x � 10 � 12 � 10 = 17 yes no
(f) 10x � 12 + 12 = 17 yes no
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Word problem solving (from Booth et al., 2014)
The Carlson family is moving today. It took 89 boxes to pack up all of their things. Dad told each of

his four children to carry 16 boxes to the truck and then he would get the rest. How many boxes did
Dad have to carry?

Tommy bought a pair of shoes on sale. It was 1/4 off the original price. He paid $42. What was the
original price of the shoes?

(not taken from Booth et al., 2014)
Ted has $12 more than Carla, and Carla has $8 more than Devon. Together, Ted and Carla have four

times as much as Devon. How much money does each person have?
Understanding algebra expressions (adapted from B. Thompson, 2014, unpublished dissertation)
Each of these three boxes weighs the same amount. If the weight of one box is x,what is the weight

of the three boxes together?

3x
x + 3
3

It’s impossible to tell
What could be the value of x that makes this equation true?

x + x + x = 15
5,5,5
4,5,6
3,3,9
all of these

If a + b = c and d + e = c, when is a + b = d + e true?

always
never
it depends on the values of a, b, c, d, and e

If n is some number, and k is 4 less than n, which expression represents k?

4
n – 4
4 – n
it’s impossible to tell
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